Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases.
نویسندگان
چکیده
Eukaryotic chromatin is subject to multiple posttranslational histone modifications such as acetylation, methylation, phosphorylation, and ubiquitination. These various covalent modifications have been proposed to constitute a "histone code," playing important roles in the establishment of global chromatin environments, transcription, DNA repair, and DNA replication. Among these modifications, histone methylation specifies regulatory marks that delineate transcriptionally active and inactive chromatin. These histone methyl marks were considered irreversible; however, recent identification of site-specific histone demethylases demonstrates that histone methylation is dynamically regulated, which may allow cells to rapidly change chromatin conformation to adapt to environmental stresses or intrinsic stimuli. Of major interest is the observation that these histone demethylase enzymes, which are in the Jumonji gene family, require oxygen to function and, in some cases, are induced by hypoxia in an HIFalpha-dependent manner. This provides a new mechanism for regulation of the response to hypoxia.
منابع مشابه
Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha.
The transcription factor HIF (hypoxia-inducible factor) mediates a highly pleiotrophic response to hypoxia. Many recent studies have focused on defining the extent of this transcriptional response. In the present study we have analysed regulation by hypoxia among transcripts encoding human Fe(II)- and 2-oxoglutarate-dependent oxygenases. Our results show that many of these genes are regulated b...
متن کاملThe histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF.
Posttranslational histone modifications serve to store epigenetic information and control both nucleosome assembly and recruitment of non-histone proteins. Histone methylation occurs on arginine and lysine residues and is involved in the regulation of gene transcription. A dynamic control of these modifications is exerted by histone methyltransferases and the recently discovered histone demethy...
متن کاملIntegrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis.
Adaptation to hypoxia is mediated through a coordinated transcriptional response driven largely by hypoxia-inducible factor 1 (HIF-1). We used ChIP-chip and gene expression profiling to identify direct targets of HIF-1 transactivation on a genome-wide scale. Several hundred direct HIF-1 targets were identified and, as expected, were highly enriched for proteins that facilitate metabolic adaptat...
متن کاملHypoxia suffocates histone demethylases to change gene expression: a metabolic control of histone methylation
Hypoxia affects various physiological and pathophyological processes. Hypoxia changes the expression of hypoxiaresponsive genes through two main pathways. First, hypoxia activates transcription factors (TF) such as Hypoxia-inducible Factor (HIF). Second, hypoxia decreases the activity of Jumonji C domain-containing histone demethylases (JMJDs) that require O2 and α-Ketoglutarate (α-KG) as subst...
متن کاملHypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases
Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1177 شماره
صفحات -
تاریخ انتشار 2009